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NOTICES

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.
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INTRODUCTION

The HF laser is attractive for a variety of military applications because of
its relatively short wavelength and its potential for high output powers.
Unfortunately, its transition frequencies fall in or near the 2.7 wm water
vapor bands, resulting in severe atmospheric attenuation for all but extremely
dry, low altitude environments. At upper altitudes, however, where the water
content of the atmosphere is low, this laser should exhibit good propagation
characteristics.

Although it is possible to use line-by-line (HITRAN type) procedures to
evaluate absorption coefficients at HF laser line positions, the accuracy of
these calculated coefficients is uncertain.' This is the case since in
evaluating coefficients at discrete laser wavelengths, the calculated values
are highly sensitive to the strengths, positions, and widths of spectral lines
in the immediate vicinity of the laser frequency. As a result, small errors
in these parameters can significantly alter the calculated coefficients as
well as their pressure/temperature dependence. In addition, to accurately
evaluate coefficients in as dense a spectral region as the 2.7um water bands,
an accurate knowledge of the overall line shape is critical if one is to
properly account for the wing contributions of the nultitude of lines around
the laser frequency.

To determine the accuracy of these calculational procedures, a previous
experimental program was undertaken which measured absorption coefficients at
a number of HF laser lines as a function of water content, temperature, and
total pressure. I Comparisons of these measured values with line-by-line
calculations indicated that agreement could be obtained only if modifications
were made to the calculational data base (the Air Force Geophysics Laboratory
[AFGL] atmospheric absorption line compilation) 2 and if a modified line
profile were used.

Since the measurements performed under the previous program were limited to
conditions corresponding to altitudes of 7 km or less, the current program was
undertaken to extend these measurements and to determine the validity of the
modified calculational procedures at yet higher altitudes. This report
presents details of a photoacoustic system developed to perform these
measurements, along with data collected with this system on HF laser lines
PI(7), P (5), P2 (6), P2 (7), and P2 (8) for mole fractions and pressures
corresponding to altitudes up to 10 km.

'Wendell R. Watkins et al, 1978, Water Va or Absorption Coefficients At HF
Laser Wavelengths, Part I: Atmospheric Conditions Corresponding to titudes
up to 7 km, ASL-TR-OO07, US Army Atmospheric Sciences Laboratory, White Sands
Missile Range, 14M.

IR. A. McClatchey et al, 1973, AFCRL Atmospheric Absorption Line Parameter
Compilation, AFGL-TR-73-0096, Air Force Geophyslcs Laboratory, Hanscom AFB,
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Appendix A contains background into the theory of measuring absorption
coefficients by photoacoustic detection with a spectrophone. A discussion of
the system and the procedures developed for its calibration and use are
presented in subsequent sections of this report.

EXPERIMENTAL SYSTEM

The Optical System

The optical system constructed for spectrophone absorption measurements is
shown schematically in figure 1, in which a pulsed Lumonics laser was used as
a source of IR radiation. Because of the strong RF fields associated with the
discharge of this laser, it was placed about 30 m away from the actual
spectrophone system and its output beam controlled with a servo-operated flat
mirror IF3). Since the near field output pattern of this laser was a donut
shaped mode, mirror F3 could be pierced without any loss of energy and an HeNe
beam coincident with the IR beam allowed for visual alignment of the optics.
Once propagated to the optics table containing the remainder of the system,
the beam was reduced in size and recollimated using two spherical mirrors S1
and S2. Flat mirrors (F5, F6) were then used, in conjunction with a pair of
irises placed on either side of the spectrophone cavity, to align the beam
with the axis of the spectrophone. Mirror F7 reflected the beam back on
itself, double passing the cavity, and a portion of the reemerging beam was
split off to monitor the laser power.

Because of the distance that the IR beam traveled in getting to the optics
table, turbulence in the laboratory air caused the beam to jitter. This had
little if any effect on the spectrophone itself since the beam size was small
compared to the 1.59-cm bore in the cavity. In monitoring the laser energy,
however, small beam motions significantly altered the output of the pyro-
electric detector. To eliminate these variations, an off-axis parabola (P1)
was used to image the fraction of the beam reflected off the beam splitter
(BS) onto a diffusion plate (D) placed 2.5 to 5 cm in front of the pyro-
electric detector. Since the diffuser had a fairly broad forward-scattering
lobe, small motions of the beam on this plate had virtually no effect on the
detector signal.

The Spectrophone

As shown in figure 2, the spectrophone assembly consisted of an outer vacuum
jacket which contained the resonant subchamber or photoacoustic detector. The
outer jacket was designed by Charles Bruce.s It incorporates a damping

1C. W. Bruce, 1976, Development of Spectrophones for CW and Pulsed Radiation
Sources, ECOM-5802, Atniospheric Sciences Laboratory, US Army Electronics
Command, White Sands Missile Range, NM.
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chamber behind the windows and damping discs to decouple false window signals
from the resonant subchamber.

The resonant subchamber used in this study evolved after several iterations of
prototype design and testing. All of the designs considered, however, were
cylindrical chambers with small inside-diameter-to-length ratios, so that they
could be operated at their fundamental longitudinal resonance at frequencies
in the kilohertz range. After several different designs were tested, a unique
differential subchamber was built with electret microphones at the ends and in
the center (figure 3). When operated in a differential mode, the signals from
the end microphones were averaged and subtracted from those of the central
microphones. Since the fundamental longitudinal mode of this chambe, had a
maximum pressure variation at the center and pressure nodes at or near the
ends, this subtraction effectively canceled signals common to all microphones
while leaving the signal arising from the fundamental mode relatively
unattenuated. This had the advantage of substantially reducing unwanted
system noise arising from window absorption effects and/or RF interference
from the laser trigger.

Tests of this system indicated that RF pickup signals were not at all in
evidence when the system was operated differentially, while without
end-microphone subtraction laser trigger noise generated a 0.45-mV spike on
the leading edge of the output waveform which itself had an amplitude of only
0.05 mV. Background acoustic noise was also highly attenuated as was seen by
deliberately injecting noise into the system using either a speaker or the
pump used to circulate gases through the spectrophone chamber. Without
end-microphone subtraction, the resonant signal was almost completely
concealed by this extraneous noise, while with subtraction this
signal--although noisy--was clearly discernible.

Tests were run on this differential system to determine detection thresholds,
using water vapor fills for which measured absorption coefficients were
available,' to determine calibration factors and pure nitrogen fills to
establish background noise levels. The results of these tests are shown in
figure 4, in which the noise equivalent absorption coefficient is plotted
against nitrogen pressure for the various laser lines. Surprisingly, this
data indicated that the background level increased with increasing pressure
and was a function of the laser line used. Although the exact origin of these
signals is not known, it is believed that they arose from absorption in the
chamber windows, since their magnitudes varied as the inverse of the H20/CO2

absorption for the various lines. Thus, the lines experiencing less H20/CO2
attenuation would be substantially stronger and less diffuse after traversing

'Wendell R. Watkins et al, 1978, Water Vapor Absorption Coefficients At HF
Laser Wavelengths, Part I: Atmospheric Conditions Corresponding to Altitudes

to 7 km, ASL-TR-O007, US Army Atmospheric Sciences Laboratory, White Sands
Missile Range, 4M.
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the 30-m path from the laser to the spectrophone system than lines with larger

H20/C0 2 attenuations. Attempts to further reduce these background levels

proved unsuccessful.

The Gas Fill/Monitoring System

Since relatively low dew-point fills were to be used in the spectrophone to
simulate high altitude conditions, a special gas filling and monitoring system
had to be constructed to maintain stable, well-known fill conditions. The
reservoir system of figure 5 was developed as a source of moderate-to-low dew-
point nitrogen/oxygen which could be added to the spectrophone as required to
maintain a given low dew-point fill. To charge the reservoir with moderate
dew-point gas, it was initially filled with pure nitrogen (and/or oxygen) to a
pressure higher than that required for a series of spectrophone fills. This
gas was then circulated through a water bath with throttling and by-pass
valves (1,2,3), thus adding water vapor to the flow. If desired, a portion of
this gas could be extracted and its dew point monitored using the dew-point
sensor incorporated into the spectrophone circulation system. Since the
volume of the reservoir was approximately 30 times that of the spectrophone, a
full reservoir could be used for several series of spectrophone fills.

The spectrophone gas control system is shown in' figure 6. A primary vacuum
pump (1) was used to evacuate the spectrophone, the gas fill lines, and the
capacitance manometers. During evacuation, the system vacuum could be
monitored with thermocouple gauges TCI, TC2, and TC3, whose positions were
chosen so that the vacuum integrity of the various legs of the system could be
routinely monitored. A subsystem consisting of a circulating pump (CP),
thermocouple gauge 1 (TC1), and a dew-point meter (OP) was used to flow the
spectrophone gas charge across the dew-point sensor to determine its water
vapor partial pressure. It also circulated this gas while adding buffer gases
to insure homogeneous mixing of the species. The spectrophone fill pressure
was monitored using both 0- to 100-torr and 0- to 1000-torr capacitance
manometers. A second vacuum system tied onto pump 2 was used to evacuate the
region between inner and outer spectrophone windows so that the system could
be used at low temperatures without building up frost or condensation on the
windows.

For a given fill, the system was initially evacuated using pump 1, after which
the circulating pump was started and gas introduced from the reservoir until
the approximate dew point of interest was achieved. Buffer gases were then
slowly bled into the circulating stream to bring the system up to the desired
total pressure. The resulting gas mixture was then circulated, its dew point
monitored, and buffer/reservoir gases added as required until a stable fill
was achieved. Once the fill appeared to be stable, the spectrophone was
valved off and absorption measurements initiated.

10
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The Data Acquisition System

As indicated in equation (A-li) in appendix A, the pressure respons? of the
photoacoustic system divided by the input laser power is directly proportional
to the absorption coefficient. Determination of coefficients therefore
requires measurement of both the spectrophone "signal" and the laser power.
To acquire, digitize, and store these signals, the computer-controlled data
system of figure 7 was used. The heart of this system was an HP 2100 computer
with several 20-kHz analogue-to-digital (A-to-D) input channels. The A-to-D
crd in the computer was set up to operate in a paced mode so that while the
CPU was requesting data from a given channel, a single data Point was
digitized and transferred each time an appropriate external trigger pulse was
received. With this configuration, the computer software controlled the
accessing of the various channels as well as the nunber of data points taken
from each, while the external pacer pulses actually initiated data collection
and controlled the data-taking rate.

Since a pulsed laser was used with this system, data collection had to be
synchronized with the arrival of each laser pulse. To do this, the
pyroelectric detector (used to monitor the laser power) was also used to
trigger a set of gate circuits which actually controlled the timing of the
system. As shown in figure 8, one of the gate circuits turned on a waveform
generator and a pulse generator which supplied pacer pulses to the A-to-D
card, initiating data collection on the spectrophone channel--the first
channel accessed by the CF- Also, since the laser power had to be recorded
at the same time that the s,)ectrophone signal was being digitized, a second
set of gate circuits placed ,' peak-and-hold circuit in its sample mode for
50s to acquire the peak of the laser pulse, and then in its hold mode for 7>,
ms so that the CPU could digitize this value after completion of the
spectrophone signal digitization. Both of these signals having been recorded,
the gate circuits would shut off the waveform/pulse generators and reset the
peak-and-hold circuit in preparation for the next laser pulse, typically
occurring 1 s later.

The software implemented on the HP 2100 was set up to optionally collect two
different types of data and followed the logic of the flowchart shown in
figure 7. Initially, this program interacted with the operator to set up a
series of parameters defining the conditions for the specific test as well as
parameters relating to the data to be collected from the spectrophone and
pyroelectric detector channels. Once this was done, the program would wait
for a prompt. Then it would access the spectrophone channel digitizing the
desired number of points in the output waveform as soon as the gate circuit
supplied the necessary pacer pulses. After digitization of the spectrophone
signal, the CPU would immediately switch to the pyroelectric channel and
record the laser pulse height as stored in the peak-and-hold circuit. At this
point, the software would store the data for the single laser pulse in one of
two ways:

1. The actual waveform recorded from the spectrophone would be divided
by the pyroelectric peak voltage and summed into a data array, or

11
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2. Pertinent parameters defining the spectrophone "signal" would be
evaluated from the waveform and these parameters output to the CRT-terminal in
the form of "signal" versus laser power plots.

This process would be repeated for each laser pulse until the desired number
of laser pulses had been processed. Then one of two possible options was
again followed, depending on whether option 1 or 2 above was chosen for the
data collection. If option I was used, an average waveform was simply
generated and displayed along with values for the waveform peak amplitude, the
average laser power, etc., as determined directly from the data. If option 2
was chosen, the software would do a least squares fit to the displayed
"signal" versus energy points and display the parameters of this fit.

Once this process was complete, the program could be restarted, either before
or after saving the data in a disc file, or the data taking session could be
simply terminated.

In effect, option 1 generated an average energy-normalized waveform which
could be used for diagnostic purposes or, with further processing, for
evaluation of absorption coefficients. Option 2 did not preserve the waveform
itself, only those parameters derivable from it (for example, peak amplitude,
integrated area, etc.). Option 2 then determined the "signal"-to-power ratio
by doing a least squares fit to the data for individual laser pulses. As will
be seen below, this latter option was found to be the most reliable for
routine data collection.

Calibration and Data Collection ProcedUres

Using a pulsed laser source in conjunction with an acoustically resonant
spectrophone cavity, the output waveform is a damped oscillatory function such
as that shown in figure 9. The parameter which must be derived from this
waveform is the peak pressure variation normalized to the laser power. To
determine this value, several different approaches were evaluated including:
measurement of the peak amplitude directly from the observed waveform,
measurement of the integrated area of the modulus squared of the waveform, and
measurement of the peak and half-width of the resonant frequency spike in the
power spectrum of the waveform. The latter two approaches were theoretically
preferable because they evaluated the peak amplitude using all data points of
the waveform instead of a single point. However, they were less reliable in
practice because of the difficulties involved in accurately measuring the
pressure-dependent time constants associated with buildup and decay of the
pressure wave in the resonant cavity. (These constants were required in order
to extract the peak pressure amplitude from either of these measurements.) As
a result, the direct approach of measuring the maximum amplitude of the
waveform was used. To minimize the effects of noise on these measurements,
however, the ratio of peak amplitude to laser power was determined by plotting
the amplitude against laser power for a large number of pulses (as shown in
figures 10 and 11). This was done while deliberately attenuating the laser
beam using neutral density filters to generate a spread in the points. Once
collected, a straight line was least-squares fit tc the data and the slope,

12
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intercept, and standard deviation of the fit computed. The data was then
scanned and poirnts falling greater than two standard deviations away from the
curve were flagged (by enclosing them -n boxes) and a final fit made ignoring
these points. (This iterative profess was primarily intended to eliminate
extraneous points introduced by freqt & t false triggering or double triggering
by the laser.) The desired siynal-L--power ratio was then given by the slope
of the resulting curve, while the intercept represented a DC offset in the
system which typically varied with spectrophone amplifier gain setting.

As shown in reference 1, absorption coefficients for HF laser lines P1 (6) and

P2(6) may be accurately evaluated using line-by-line procedures in conjunction

with a modified line profile and an augmented AFGL absorption line
tabulation. Consequently, the spectrophone system used here was calibrated by
measuring the signal-to-energy ratio at laser line P2(6) and correlating this

ratio with absorption coefficients calculated for this laser line at the
appropriate fill conditions. Figure 12 shows an example of a typical
calibration curve obtained in this way for a variety of water vapor fills.

EXPERIMENTAL DATA

Experimental Data on HF Laser Lines

In the present program experimental data were collected on HF laser lines
Pj(7), P2 (5), P2 (6), P2 (7), and P2 (8) using water vapor partial pressures of
0.464, 0.182, and 0.054 torr at total pressures of 700, 500, 250, and 125
torr. The results of these measurements are presented in table 1, where the
relative values for the lines have been converted to absolute coefficients
using the calculated values shown for laser line P2 (6). For laser line P2(8)

only 0.464 torr data were collected because of the high background noise level
observed for this line (figure 4). Since for all th2 measurements the water
vapor partial pressure was much smaller than the total pressure, the observed
coefficients for a given line should vary linearly with water vapor pressure
at constant total pressure. If the modified line profile discussed in
reference 1 is assumed correct for the water lines in the HF region, it may be
shown that the total absorption coefficient at frequency v is given by:

K(V) = P5  C Si ) e + CIE e
i -,[( V - Vi)  + -Y? Pe] i (V - Vj)

~ i i e3

where si is the strength of the it h spectral line, yi the pressure-broadened

half-width of this line, v the computational frequency, vi the line center

frequency of the ith line, c and c' normalization constants, n a fit

parameter, Ps the absorbing gas specie partial pressure, and Pe the effective

broadening pressure. The line profile used in deriving this expression is

effectively a composite of two functional forms, one appropriate for near

13



TABLE 1. OBSERVED ABSORPTION COEFFICIENTS
AND LINEAR SQUARES FIT VALUES*

Line P1 (7)

Water Vapor Pressure (torr)

0.054 0.182 0.464
Total Pressure

(torr) Fit Obs. Fit Obs. Fit Obs.

125 0.0343 0.0373 0.115 0.117 0.295 0.294

250 0.0552 0.0590 0.186 0.184 0.474 0.475

500 0.0973 0.103 0.328 0.317 0.836 0.840

700 0.133 0.143 0.448 0.453 1.140 1.140

Line P2 (5)

Water Vapor Pressure (torr)

0.054 0.182 0.464
Total Pressure

(torr) Fit Obs. Fit Obs. Fit Obs.

125 0.0455 0.0453 0.153 0.153 0.391 0.391

250 0.0794 0.0833 0.267 0.269 0.682 0.681

500 0.1397 0.1460 0.471 0.488 1.200 1.193

700 0.1870 0.196 0.630 0.673 1.607 1.590

*As a function of total pressure water vapor partial pressure. All entries

are per kilometer.
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Table 1 (cont)

Line P2(6) Water Vapor Pressure (torr)

0.054 0.182 0.464
Total Pressure

(torr) Fit Obs. Fit Obs. Fit Obs.

125 0.0365 0.0362 0.123 0.122 0.314 0.314

250 0.0667 0.0665 0.225 0.224 0.574 0.574

500 0.122 0.122 0.412 0.412 1.052 1.052

700 0.164 0.164 0.552 0.551 1.407 1.407

Lfne P2(7)LWater 
Vapor Pressure (torr)

0.054 0.182 0.464
Total Pressure

(torr) Fit Obs. Fit Obs. Fit Obs.

125 0.005 0.009 0.0167 0.0192 0.0427 0.0413

250 0.0095 0.0106 0.0322 0.0336 0.0820 0.0813

500 0.0165 0.0190 0.0556 0.0567 0.142 0.141

700 0.0224 0.0250 0.0757 0.800 0.193 0.191

Line P2(8) Water Vapor Pressure (torr)

0.464

Total Pressure
(torr) Fit Obs.

125 - 0.010

250 - 0.020

500 - 0.028

700 - 0.032

15



wings of spectral lines (v - vi < 
3yi) and one appropriate for far wings (V -

Vi > 3yi). As a result, equation 1 contains two summations; in the first the
sum over i includes all lines less than three half-widths from the laser
frequency v), while in the second the sum over j includes all lines outside
this range. Since the effective broadening pressure Pe is given by

Pe = PT + (6 - 1)Ps  (2)

where PT is the total pressure and B the self-to-foreign broadening ratio, Pe

effectively reduces to PT whenever PT is much greater than Ps" This being the

case, the sums in equation (1) are constant for a given laser line at constant

total pressure, and K(v) should vary as

K(v) = m(Pt, V)Ps 3

Using this linear dependence, least squares fits were made to the data as
shown in figures 13 and 14. The absorption coefficients obtained from these
fits have been included in table 1 along with the observed data. As may be
seen from this table, the linear fits did not significantly alter the
coefficient values for any of the laser lines except P2(7). This particular

line, however, not only exhibited low water vapor absorption, but also
suffered from a high background noise level. The background noise has its
greatest effect on the smaller coefficient values, tending to asymptote the
data curve to a nonzero value at zero pressure. Fitting to a function such as
equation (2) weights the slope value most heavily with the higher pressure
data, which is least affected by this noise and hence in the more linear
portion of the curve. Values determined from these least squares fits should
therefore be more reliable than the raw data at the low absorption levels.

The variation of the slopes of these curves m) with total pressure (Pt) will

generally not be linear, however, since terms involving Pe' p2 and Pe-1

et e e
occur in equation (1). If the absorption at a given laser line is dominated

by nearby spectral lines, so that the first term of this equation is the

significant contributor, then K(v) should vary as Pe when (v - vi)p > y! P21 i e

and slower than Pe when (v - vi)2 < y( P2 . On the other hand, if K(v) is1e

strictly wing dominated, so that the second term is the most significant, the

slopes of the curves m) should vary as P"' . Since in either case m should
e

vary as some power of Pe (or effectively Pt for the present data), least
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square fits of the m values as a function of total pressure were made using a

function of the form

m = C Pt (4)

The results of these fits are shown in figures 15 and 16 for the various laser
lines. It may be seen from these figures that equation (3) does represent the
data well and may therefore be used to interpolate between data points as a
function of total pressure. It is also worth noting that the powers of Pt

determined for lines P2 (5) and P2(7) are very close to (n - 1) = 0.88. This
value was determined in reference I to give the best agreement with
observations when using equation (1) to compute water vapor/HF-laser
absorption coefficients.* Since these laser lines are known to fall in
valleys between water vapor absorption lines, it is tempting to state that
this agreement supports the modified wing behavior of equation (1). However,
it is possible that, by calibrating against calculated coefficients for line

P2(6), the data have been somehow biased with this far-wing pressure
dependence. To resolve this question, data should be generated either by
using a totally different measurement scheme or by calibrating the
spectrophone with a different molecular specie.

Comparisons with Calculations

The primary objective of this program was to determine the validity of
line-by-line procedures in computing HF-laser-line absorption coefficients.
As a result, line-by-line methods were used to compute absorption coefficients
for each of the laser lines at each of the observation conditions. In effect,
these calculations used equation (1) in conjunction with line parameters found
in the 1980 AFGL atmospheric absorption line compilation. 2  Details of the
procedures used are discussed in reference 1 and will not be repeated here.
However, it should be noted that:

1. All lines within 20 cm-1 of the laser frequency have been included in
the computation.

*The fact that line P (7) exhibits a different behavior may be explained by

its almost exact coincidence with two moderate strength water vapor lines.

2R. A. McClatchey et al, 1973, AFCRL Atmospheric Absorption Line Parameter
Compilation, AFGL-TR-73-0096, Air Force Geophysics Laboratory, Hanscom AFB,
MA.
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2. Self-to-foreign broadening coefficients (B) experimentally determined
for each laser line frequency,' as shown in table 2, have been used instead of
the canonical value of 5.0.

TABLE 2. SELF-TO-FOREIGN BROADENING COEFFICIENTS
USED IN THE LINE-BY-LINE CALCULATIONS

Laser Line Frequency (cm- 1) B

P1(7) 3644.1454 5.00

P2 (5) 3577.5002 6.30

P2 (6) 3531.1747 3.91

P2 (7) 3483.6522 8.20

P2 (8) 3434.9994 5.00

3. The modified Lorentz profile of reference 1 (or a Voigt derived from
it) has been used, with n taken as 1.88, which is the optimum value determined
in reference 1 for water vapor lines in the HF laser region.

Comparisons of calculated coefficients with the experimental data presented
above are shown in figures 17 through 20, and the computed coefficients for
line P2 (6) (used to calibrate the data) are given in figure 21. Previous

experimental work' comparing long-path absorption measurements with line-by-
line values based on the 1978 AFGL tape indicated that agreement could be
obtained only if the modified line profile of reference 1 was used and if the
tape was modified by replacing the tabulated water vapor parameters with those
evaluated by Flaud and Camy-Peyret.1 The 1980 version of the AFGL atlas, used
in the current computations, has been updated to incorporate the Flaud,
Camy-Peyret values. As can be seen from figures 17 through 20, this version
of the tape, when used with the modified line profile, does an exceptionally

'Wendell R. Watkins et al, 1978, Water Vapor Absorption Coefficients At HF
Laser Wavelengths, Part I: Atmospheric Conditions Corresponding to Altitudes
ue to 7 km, ASL-TR-007, US Army Atmospheric Sciences Laboratory, White Sands
missile Range, NM.

4J. M. Flaud and C. Camy-Peyret, 1975, "Vibration-Rotation Intensities in
H20 - Type Molecules, Application to the 2v2 , v, and v3 Bands of H2

16 0," J Mol

Spectry, 55:278.
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good job of predicting the observed coefficients at higher total pressures,
although some minor deviations occur at low pressures.

Of the lines observed, P2(5) and P2(7) show exceptional agreement with
calculated values while P1 (7) and P2(8) show minor discrepancies. The

deviations observed for laser line P2 (8) may simply be a result of the high

background "noise" level observed in the spectrophone system when operating on

this line. The discrepancies observed for laser line PI(7), cannot be

explained in terms of experimental uncertainties because the coefficients for
this line are large and are several orders of magnitude above the observed
noise level of the system. However, the systematic underprediction of the
coefficients by the line-by-line calculations is the same type of behavior
observed elsewhere' in comparing this type of calculation with long-path
absorption data. Because the calculations agree with the data at high
pressures while overpredicting the absorption at lower pressures, the problem
may be associated with two weak water vapor lines in the tabulation* which are
predicted to be in almost exact coincidence with the laser frequency

(3644.1454 cm-1). At higher pressures, these lines would broaden, decreasing
their peak absorptinn and their contribution would be small compared to the
wings of stron'ger adjacent lines. At lower pressures, however, the wings of
adjacent lines would be diminished and the peaks of these weaker lines
increased, sr that they could have a significant effect upon the calculated
coefficient,-. If tiese lines (or the laser line frequency) were shifted by as
little as 0.0' cm-1 , much of this overprediction could be eliminated.

Because Me observed data appear to follow the simplified relationship

K(v) = A(v)Pa( V)P t s (5)

calculations of absorption coefficients at low water vapor pressures can most
easily be determined using this function in conjunction with the parameters
A(v) and a(v) listed in table 3. However, the parameters of table 3 are those
appropriate for ambient temperature, at which the data were collected. For
actual upper altitude simulations in which the temperature is lower,

'Wendell R. Watkins et al, 1978, Water Vapor Absorption Coefficients At HF
Laser Wavelengths, Part I: Atmospheric Conditions Corresponding to Altitudes
up to I km, ASL-TR-O007, US Army Atmospheric Sciences Laboratory, White Sands
Missile Range, NM.

*In the notation J' ' ' - J" °' " these lines are: 115,7 - 107, 4(V = 001 -

Ka,oc ac

000) at 3644.1413 cm"I and 54,1 - 41,4(V = 020 - 000) at 3644.1480 cm-1 .
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line-by-line calculations should either be used directly or be used to
generate appropriate values of A() and c(v).

TABLE 3. PARAMETERS AMv) AND a(y) DETERMINED
IN FITTING THE EXPERIMENTAL DATA TO

K(v) = A(v) PQ(V)P
t s

Laser Line A(v) O()

P1(7) 1.3983E-02 0.78473

P2(5) 1.6090E-02 0.81872

P2 (6) 1.0039E-02 0.87183

P2(7) 1.4339E-02 0.86551

CONCLUSIONS

Absorption coefficients were measured at HF laser lines using low water vapor
pressures and total pressures ranging from 125 to 700 torr. These
measurements were made using a unique differential photoacoustic system which

allowed coefficients to be determined to 5 x 10-3 km-1. The results of these
measurements were found to be well represented by a function of the form

K(v) = A(v)P'(v)P( t s (6)

where A() and a(v) were determined for each laser frequency. Comparisons of
these data with calculated values based on a modified Lorentz profile, with an
augmented line wing, and spectroscopic parameters tabulated in the 1980 AFGL
atmospheric absorption line compilation, showed good agreement for all lines
at high pressures (&700 torr), with some discrepancies appearing at lower
pressures. The discrepancies were most significant at HF laser line P1(7);

however, these can be explained in terms of a possible mispositioning in the

tabulation of a pair of water vapor lines, which are currently within 0.004

cm-I of the laser frequency.
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In general, the current data appear to support previous findings' that water
vapor lines exhibit augmented wing absorption relative to the standard Lorentz
profile and that agreement with experimental observations can be obtained if
updated parameters are used in conjunction with a profile of the form
presented in reference 1.

'Wendell R. Watkins et al, 1978, Water Vapor Absorption Coefficients At HF
Laser Wavelengths, Part I: Atmospheric Conditions Correspondingto Altitudes
up to I Km, ASL-TR-007, US Army Atmospheric Sciences Laboratory, White Sands
Missile Range, NM.
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Figure 1. Schematic of the optical layout used for spectrophone absorption
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Figure 2. Schematic of the spectrophone chamber showing the window assemblies
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Figure 17. Observed absorption coefficients for laser line Pj(7) compared to
those calculated using line-by-line procedures.
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APPENDIX A

BACKGROUND

For a typical midlatitude summer atmospheric profile the water vapor pressure
at 10 km is on the order of 50 to 60 mtorr, while the total pressure is
approximately 200 torr. Under these circumstances, the absorption
coefficients for HF laser lines vary from about 10- per kilometer to less

than per kilometer. If these coefficients are to be determined from
transmission measurements for which the transmission (k) is related to the
absorption coefficient (K) through Beer's law, the errors in K are given by

(AK/K) = [1/ln(T)](AT/T) (A-1)

where (AT/T) represents the accuracy of the transmission measurement.
Consequently, even with a 1.5 km measurement path and a 1 percent measurement
accuracy (AT/T), the errors incurred in the determination of K are: 6.7
percent for K - 0.1 km 1, 67 percent for K - 0.01 km- 1, and 670 percent for K

0.001 km"1 . It is obvious from these figures that measurement of
transmission is not the best method for use in determining small absorption
coefficients, and that an alternate approach which evaluates K directly is
requi red.

Photoacoustic detection, which exhibits these desired characteristics, is the
approach chosen for the present program. In effect, this type of detection
measures the pressure rise taking place in an enclosed sample of gas as a
result of the absorption of radiation and the subsequent transfer of this
absorbed energy to kinetic energy through collisional deactivation. To
determine the pressure response (p) of a system due to the addition of heat
(H) through absorption of radiation, one must solve the standard wave equation

1 a2  1) 9H,V2p '- -;T - (-i
- a 2 T at (A-2)

where co is the velocity of sound and y is the ratio of specific heats
(C /C ). As shown by Rosencwaig,1 the easiest way to solve this equation is
to tae its Fourier transform and find solutions of the resultant equation in
terms of the normal modes of the system (that is, the solutions of the
corresponding homogeneous wave equation).

'Allan Rosencwaig, 1980, Photo-acoustics and Photo-acoustic Spectroscopy, John

Wiley & Sons, Inc., New York.
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If this is done for an open cylindrical chamber of radius a and length L, the
normal modes are found to be

P. = cos(mO)[A Jm (krr) B sin(kzZ)] (A-3)

where Jm is the Bessel function of the first kind, Z the axial dimension in
the cavity, r the radial dimension and

kz - n nz = "1,2,3...

k rr a mn

where amn is defined by

lJm(n) = 0.
m Ir mn 0

The frequencies of the normal modes defined by the integers m, n, and nz are
then given by

Wj = C(k2 + k2) 1/2

C0  r z (A-4)

and the general solution for the pressure response of the photoacoustic system
is

p(r,w) = r A.(w)pj(r) (A-5)
J

This represents the spectrum of the resultant pressure response, written in
terms ot the spatially dependent normal mode structures pj(r) and
corresponding amplitude functions Aj(w) defining the frequency dependence of

the jth mode. By substituting equation (14) into the transformed wave
equation one may show that the complex amplitudes are given by

[K(y - l)/V c] Jp* I dvAj(w) =-i w
(wI - W2) (A-6)
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where K is the absorption coefficient, I the optical beam intensity, and Vc
the chamber volume. The numerator of this equation represents the coupling
between the beam and the normal mode j while the denominator represents the
resonant conditions, if any, which exist in the photoacoustic chamber. The
fact that this amplitude tends to infinity as v tends to uj is the result of
ignoring disipative forces acting on the pressure wave in the chamber. These
effects can be added as a perturbation, modifying the above expression through
the addition of a quality factor Qj for each mode. This gives

[K(y - 1)/Vc3f P*j I dv
A.(w) =-i W (A-7)

(Wj W9 -i(wj(/Qj)

The moduli squared of these complex amplitude functions represent the profiles
for the various modes in the Weiner or power spectrum. For a nonresonant
system and a spatially constant input beam, the only mode present is the DC or
zero frequency mode for which

[K(y - l)WL/Vc] 2
wA + (1/T )2

where To is the damping time constant arising from heat conduction to the

walls of the chamber and W is now the input power (watts). Therefore, if a
nonresonant system is illuminated with a laser of power W and the pressure is
allowed to reach its maximum value, this maximum will be proportional to

Pmax a[Kl(y - 1)W/V c ] 0  (A-9)

Since the amplitude of this nonresonant pressure rise is directly proportional
to the absorption coefficient (K) and the input power (W), a photoacoustic
system could be operated in this mode, with K being determined by monitoring
the pressure rise resulting from a given input power. From a practical point
of view, however, this is not an ideal operating mode, because the pressure
sensor and associated electronics must operate at DC and are consequently
susceptible to 1/f noise in the electronics and long term drifts in the
system. If one attempts to chop the input beam so that synchronous detection
can be used, extremely low frequencies must be used because the pressure
response drops off as l/w.

39

N I



To avoid these problems, a photoacoustic detector can be set up as an
acoustically resonant system and operated at its fundamental resonant
frequency. Under these circumstances, the power spectrum amplitude is given
by'

A' [Kl(y - 1)W/Vc2A
WAiW)1= +(A-O)( - (j,)1 (ww1/QI)'

If the system is driven at resonance (w = 1), the pressure response will be
proportional to

Pmax [K1(y - l)W/Vc](QI/" I) (A-11)

This exhibits the same dependence on K and W as the nonresonant case.
Consequently, absorption coefficients can again be evaluated by simply
measuring the pressure response of the system for a given input power. Unlike
the nonresonant case, however, this response has a (Q/) dependence, so that
the (11w) falloff can be counteracted by using a high Q cavity. In addition,
use of a high Q cavity also allows for narrow bandpass detection of the
resultant signals, substantially reducing the background noise.

In the present investigation only a pulsed HF laser was available. Although
the same general expressions apply when using a pulsed source, the gain
normally associated with a high Q cavity will not be realized unless the laser
repetition rate is short compared to (Q/w). Unfortunately, this is normally
not the case so that what is obtained as output in the time domain from a
pulse-operated system is a damped pressure response with a peak proportional
to

K l(y - 1)W
V c(A-12)c

and a damping envelope given by e't/o for the nonresonant case and e-tWlQ1
for a resonant case. However, it is still advantageous to use a resonant
system, since: operation at higher frequencies avoids the 1/f noise
associated with the pressure transducer and electronics; narrow bandpass
amplification, which eliminates much of the background noise can be used; and
small, highly sensitive microphones can be used instead of larger volume, less
sensitive capacitance manometers.

'Allan Rosencwaig, 1980, Photo-acoustics and Photo-acoustic Spectroscopy, John
Wiley & Sons, Inc., New York.
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